New anatomy and motor control that results from neurological injury or disease

W. Barry McKay
Spinal Cord Injury Research Laboratory
Consequences of CNS injury or disease

New Anatomy

- Neuron death
- Axon demyelination
- Partial (focal or diffuse)
- Regrowth, remyelination and recalibration
- *New anatomical relationships*
 - within and between processing CNS nuclei
 - altering functional output in complex ways
- *Highly individualized New Anatomy*

Spinal Motor Centers, "nuclei"
Somatotopic Organization

sEMG reflects CNS modulation of motor output, spinal motor excitability, and therefore muscle contraction and movement
Plurisegmental Reflex Control

Cutaneomuscular withdrawal reflex
Volitional Control

Reticulospinal Tract
Generalized excitation intensity based on level of alertness and possibly, effort

Vestibulospinal Tract
Equilibrium – excitation intensity based on antigravity demands

Corticospinal System
Anterior and Lateral Tracts
Supplementary Motor Area
Primary Motor Cortex

Bulbospinal Nuclei
Movement versus *Motor Control*

- **Movement is measured as:**
 - Range of motion
 - Speed of movement
 - Forces (most clinical scales)
 - Trajectories
 - Angular velocities

- **Motor Control can be measured as:**
 - *Selection* and firing of motor neurons
 - *Activation*, in concert with other motor units in multiple muscles
 - *Deactivation* of motor units
 - Inhibition of reflexes and spasms
 - Control over synergistic relationships
 - Cessation of activity to end task
Relaxation

- Intact nervous systems
 - can achieve EMG silence
- Damaged nervous systems
 - unbalanced input to spinal motor neurons
- **Inhibition dominates**
 - no motor unit output
- **Excitation dominates spinal pre-motor center**
 - “Spontaneous” motor unit firing results

C8 AIS-C SCI (5 minutes)
C4, AIS-D Central Cord Syndrome (20 second segments)

<table>
<thead>
<tr>
<th>RUT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RBB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAPB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REDB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAPB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LADO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LADD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LHAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSOI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 days | 47 days | 6 months
Relaxation

Parkinson’s Disease (20 seconds)

Relaxation – Regularly-repeating background activity

SCI (5 minutes)
Relaxation – Regularly-repeating background activity

Multile Sclerosis (5 minutes)
Motor unit recruitment rate reduction

9 subjects with initial recordings between 1 and 11 days post onset (6.4 ± 3.6 days)

Biceps Brachi
Voluntary elbow flexion and extension

The time between the first motor unit firing and the peak of pooled firing decreases with recovery

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Non-injured Onset-to-peak time</th>
<th>SCI Onset-to-peak time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial recording</td>
<td>First seen</td>
</tr>
<tr>
<td></td>
<td>(Sec ± s.d.)</td>
<td>Number of sides</td>
</tr>
<tr>
<td>Biceps brachi</td>
<td>0.28 ± 0.17</td>
<td>11</td>
</tr>
<tr>
<td>Wrist extensors</td>
<td>0.53 ± 0.39</td>
<td>10</td>
</tr>
<tr>
<td>Quadriceps</td>
<td>0.42 ± 0.21</td>
<td>11</td>
</tr>
<tr>
<td>Tibialis anterior</td>
<td>0.59 ± 0.28</td>
<td>11</td>
</tr>
</tbody>
</table>

Recovery after SCI

Example of voluntary right ankle dorsiflexion “move and hold”

Complete paralysis at onset and at 11 days post-injury
27 days - Activation of prime mover (RTA) with co-activation of antagonistic and distant muscles
45 days - Increased prime mover activation with coactivation and clonus
135 days - Increased prime mover activation with decreased coactivation

Slow recruitment
Disrupted spatial distribution

Voluntary Wrist Extension and Flexion

<table>
<thead>
<tr>
<th>Intact Subject</th>
<th>Hemiparetic Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Biceps Brach</td>
<td>R Biceps Brach</td>
</tr>
<tr>
<td>R Triceps Brach</td>
<td>R Triceps Brach</td>
</tr>
<tr>
<td>R Triscs Brachii</td>
<td>R Triscs Brachii</td>
</tr>
<tr>
<td>R Wrist Ext.</td>
<td>R Wrist Ext.</td>
</tr>
<tr>
<td>R Wrist Flex.</td>
<td>R Wrist Flex.</td>
</tr>
</tbody>
</table>

Self-paced voluntary movement

Slow recruitment of motor units in the hemiparetic subject
Voluntary Elbow (Left) Extension and Flexion
(Supine position)

Intact Subject

Hemiparetic Subject

Self-paced voluntary movement

Slow recruitment of motor units and co-activation of muscles in the hemiparetic subject
Other causes of motor unit firing control changes - *Fatigue*

- In the normal motor neuron pool
 - firing rates are matched with muscle fiber one-half relaxation times
 - those innervating slow muscles (soleus) fire at slow rates and have low-fusion frequencies while those innervating fast muscles (tibialis anterior) that fire at high rates and have high-fusion frequencies

- During fatiguing contractions, developed force decreases while firing rates increase presumably with increasing drive (effort) 2,3

Other causes of motor unit firing control changes - *Aging*

- Decrease in force development
- Decrease in motor unit firing rates
- Decrease in normal rate fluctuations
- Lower recruitment force thresholds
- Motor unit potentials that appear increasingly polyphasic
 - suggesting denervation–reinnervation processes

Other causes of motor unit firing control changes - *Stroke*

- Decrease in motor unit baseline firing rates
- Earlier recruitment of motor units with increasing force
- Loss of the ability to modulate firing rates appropriately

Other causes of motor unit firing control changes - *Spinal Cord Injury*

- **Chronic phase, incomplete lesions**
 - Reduced joint movement torques
 - Torque development is slowed
 - ...even though peripheral nerve stimulation peak twitch forces are within normal limits 1

- **Acute and sub-acute phases**
 - Recruitment rate slowed
 - ...with recovery, recruitment rate increases, approaching times measured in non-injured subjects 2

Other causes of motor unit firing control changes - *Training*

- Strength training exercise brings
 - increase in TMS-MEP amplitude
 - increase in the number of motor units activated
 - increase in the maximum number of volitionally recruited units
 - Increase motor unit discharge rates
- However, technical limitations of this study left the question of whether the changes were due to cortical or spinal changes open.

Measuring New Anatomy

- Behavior of motor neural circuitry can be...
 - Objectively characterized
 - Quantified using spinal motor output,
 • pooled motor unit activity
 • appropriate muscles
 • during well-designed reflex and volitional motor tasks.

- **The important parameters:**
 - *Resting balance of excitation - inhibition*
 - *Rate of voluntary motor unit recruitment*
 - *Spatial distribution of motor unit activation across multiple muscles*
 - *Rate of cessation of motor unit firing*